Wednesday, July 25, 2012

Physics-Intro to Quantum Mechanics



Constants:
Masses of particles: electron, proton, neutron, in units of MeV/c 
= 0.511 MeV/c 
= 938.26 MeV/c 
= 939.55 MeV/c 2
Approximations for the value of hc
h c = 12,400 eV A
ħ c = 1,973 eV A
Approximation of k boltzmann
= 1/11,600 eV/K
Approximation of Coulomb constant and two electrons worth of charge.
k e =14.4 eV A
= (k e ) / (2 a ) = (m k ) / (2 ħ ) = 13.6 eV
R = 1.097 x 10 -1
Relativity:
E = (m + p 1/2
Planck's Law:
u (λ) = n (λ) E (λ)
n (λ) = 8 π / λ 
E (λ) = h c / [ λ (e h c / λ k -1)]
Energy in an oscillator:
= n h f
P (E) ∝ e -E / k T
Stefan's law:
R = σ T 
σ = 5.67 x 10 -8 W / m 
R = c U / 4
U = ∫ u (λ) dλ
Wein's Displacement law:
λ T = h c / 4.96 k B
Photons:
Energy, momenta and frequency of photons
E = p c
E = h f
p = h / λ
f = c / λ
Photoelectric effect:
e V = m v / 2 = h f - φ
Compton Scattering:
λ ' - λ = h (1 - cos (θ) / (m c)
Rutherford Scattering:
b = (k q α Q cot (θ / 2)) / m α 
ΔN ∝ 1 / sin (θ / 2)
Electrostatics:
F = k q / r 
U = q V
V = k q / r
Hydrogen spectra:
1 / λ = R (1 / m - 1 / n )
Bohr atom:
= k e Z / 2 r = - Z / n 
= k e / 2 a = m k / 2 ħ = 13.6 eV
h f = E - E 
= r 
= a / Z
= ħ / m k e = 0.529 A
L = m v r = n ħ
X - ray spectra:
1/2 = A (Z - b)
K : b =1, L : b = 7.4
de Broglie:
wavelength, frequency, momentum, and energy of particles
λ = h / p
f = E / h
ω = 2 π f
k = 2 π / λ
E = ħ ω
p = ħ k
E = p / 2 m
Group and phase velocity:
= dω / dk
= ω / k
Heisenberg Uncertainty principles:
Δx Δp ≈ ħ
Δt ΔE ≈ ħ
Wave Function:
Ψ(x , t) = |Ψ(x , t)| e i θ (x , t)
P(x , t) = |Ψ(x , t)| dx
Schrodinger Equation:
-ħ δ Ψ / 2 m δx + V(x) Ψ(x , t) = i ħ δ Ψ / δ t;
Ψ (x , t) = ψ(x) e -i E t / ħ 
-ħ δ Ψ / 2 m δx + V(x)&psi(x) = Eψ(x)
∫ dx Ψ * Ψ = 1
Ψ (x) = (2/L) 1/2 sin(n π x / L)
(x) = π 
op = x
op = ħ δ / i δ x
< A > = ∫ δ x Ψ * A op Ψ
op Ψ = a Ψ
uncertainty:
Δ A = ( <A > - <A>  ) 1/2
Harmonic Oscillator:
Ψ (x) = C n H n (x) e -m ω x 2 / 2 ħ 
= (n + 1/2) ħ ω
E = p 2 / 2 m + m ω / 2 = m ω / 2 , Δ n = +- 1
Step potential:
R = (k - k ) 2 / (k + k ) 2 
T = 1 - R
k = (2 m (E - V) / ħ) 1/2
Tunneling
Ψ (x) ≈ e -αx 
T ≈ e -2αx 
T ≈ e -2 ∫ αx dx
α(x) = [(2 m [V(x) - E]) / ħ 1/2
3-D square well
Ψ(x, y, z) = Ψ (x) Ψ (y) Ψ (z)
E = π 2
Spherically symmetric potential
Ψ n,l,m (r, θ, φ) = R n l (r) Y l m (θ, φ)
l m (θ, φ) = f l m (θ) e i m φ

No comments:

Post a Comment