Constants:
Masses of particles: electron, proton, neutron, in units of MeV/c 2
m e = 0.511 MeV/c 2
m p = 938.26 MeV/c 2
m n = 939.55 MeV/c 2
m e = 0.511 MeV/c 2
m p = 938.26 MeV/c 2
m n = 939.55 MeV/c 2
Approximations for the value of hc
h c = 12,400 eV A
ħ c = 1,973 eV A
h c = 12,400 eV A
ħ c = 1,973 eV A
Approximation of k boltzmann
k b = 1/11,600 eV/K
k b = 1/11,600 eV/K
Approximation of Coulomb constant and two electrons worth of charge.
k e 2 =14.4 eV A
k e 2 =14.4 eV A
E 0 = (k e 2 ) / (2 a 0 ) = (m k 2 e 4 ) / (2 ħ 2 ) = 13.6 eV
R = 1.097 x 10 7 m -1
Relativity:
E = (m 2 c 4 + p 2 c 2 ) 1/2
Planck's Law:
u (λ) = n (λ) E (λ)
n (λ) = 8 π / λ 4
E (λ) = h c / [ λ (e h c / λ k b T -1)]
n (λ) = 8 π / λ 4
E (λ) = h c / [ λ (e h c / λ k b T -1)]
Energy in an oscillator:
E f = n h f
P (E) ∝ e -E / k B T
P (E) ∝ e -E / k B T
Stefan's law:
R = σ T 4
σ = 5.67 x 10 -8 W / m 2 K 4
R = c U / 4
U = ∫ u (λ) dλ
σ = 5.67 x 10 -8 W / m 2 K 4
R = c U / 4
U = ∫ u (λ) dλ
Wein's Displacement law:
λ m T = h c / 4.96 k B
Photons:
Energy, momenta and frequency of photons
E = p c
E = h f
p = h / λ
f = c / λ
E = p c
E = h f
p = h / λ
f = c / λ
Photoelectric effect:
e V 0 = m v 2 / 2 = h f - φ
Compton Scattering:
λ ' - λ = h (1 - cos (θ) / (m e c)
Rutherford Scattering:
b = (k q α Q cot (θ / 2)) / m α v 2
ΔN ∝ 1 / sin 4 (θ / 2)
ΔN ∝ 1 / sin 4 (θ / 2)
Electrostatics:
F = k q 1 q 2 / r 2
U = q 0 V
V = k q / r
U = q 0 V
V = k q / r
Hydrogen spectra:
1 / λ = R (1 / m 2 - 1 / n 2 )
Bohr atom:
E n = k e 2 Z / 2 r n = - Z 2 E 0 / n 2
E 0 = k e 2 / 2 a 0 = m k 2 e 4 / 2 ħ 2 = 13.6 eV
h f = E i - E f
r n = r 0 n 2
r 0 = a 0 / Z
a 0 = ħ / m k e 2 = 0.529 A
L = m v r = n ħ
E 0 = k e 2 / 2 a 0 = m k 2 e 4 / 2 ħ 2 = 13.6 eV
h f = E i - E f
r n = r 0 n 2
r 0 = a 0 / Z
a 0 = ħ / m k e 2 = 0.529 A
L = m v r = n ħ
X - ray spectra:
f 1/2 = A n (Z - b)
K : b =1, L : b = 7.4
K : b =1, L : b = 7.4
de Broglie:
wavelength, frequency, momentum, and energy of particles
λ = h / p
f = E / h
ω = 2 π f
k = 2 π / λ
E = ħ ω
p = ħ k
E = p 2 / 2 m
λ = h / p
f = E / h
ω = 2 π f
k = 2 π / λ
E = ħ ω
p = ħ k
E = p 2 / 2 m
Group and phase velocity:
v g = dω / dk
v p = ω / k
v p = ω / k
Heisenberg Uncertainty principles:
Δx Δp ≈ ħ
Δt ΔE ≈ ħ
Δt ΔE ≈ ħ
Wave Function:
Ψ(x , t) = |Ψ(x , t)| e i θ (x , t)
P(x , t) = |Ψ(x , t)| 2 dx
P(x , t) = |Ψ(x , t)| 2 dx
Schrodinger Equation:
-ħ 2 δ 2 Ψ / 2 m δx 2 + V(x) Ψ(x , t) = i ħ δ Ψ / δ t;
Ψ (x , t) = ψ(x) e -i E t / ħ
-ħ 2 δ 2 Ψ / 2 m δx 2 + V(x)&psi(x) = Eψ(x)
∫ dx Ψ * Ψ = 1
Ψ n (x) = (2/L) 1/2 sin(n π x / L)
E n (x) = π 2
x op = x
p op = ħ δ / i δ x
< A > = ∫ δ x Ψ * A op Ψ
A op Ψ = a Ψ
Ψ (x , t) = ψ(x) e -i E t / ħ
-ħ 2 δ 2 Ψ / 2 m δx 2 + V(x)&psi(x) = Eψ(x)
∫ dx Ψ * Ψ = 1
Ψ n (x) = (2/L) 1/2 sin(n π x / L)
E n (x) = π 2
x op = x
p op = ħ δ / i δ x
< A > = ∫ δ x Ψ * A op Ψ
A op Ψ = a Ψ
uncertainty:
Δ A = ( <A 2 > - <A> 2 ) 1/2
Harmonic Oscillator:
Ψ n (x) = C n H n (x) e -m ω x 2 / 2 ħ
E n = (n + 1/2) ħ ω
E = p 2 / 2 m + m ω 2 x 2 / 2 = m ω 2 A 2 / 2 , Δ n = +- 1
E n = (n + 1/2) ħ ω
E = p 2 / 2 m + m ω 2 x 2 / 2 = m ω 2 A 2 / 2 , Δ n = +- 1
Step potential:
R = (k 1 - k 2 ) 2 / (k 1 + k 2 ) 2
T = 1 - R
k = (2 m (E - V) / ħ) 1/2
T = 1 - R
k = (2 m (E - V) / ħ) 1/2
Tunneling
Ψ (x) ≈ e -αx
T ≈ e -2αx
T ≈ e -2 ∫ αx dx
α(x) = [(2 m [V(x) - E]) / ħ 2 ] 1/2
T ≈ e -2αx
T ≈ e -2 ∫ αx dx
α(x) = [(2 m [V(x) - E]) / ħ 2 ] 1/2
3-D square well
Ψ(x, y, z) = Ψ 1 (x) Ψ 2 (y) Ψ 3 (z)
E = π 2
E = π 2
Spherically symmetric potential
Ψ n,l,m (r, θ, φ) = R n l (r) Y l m (θ, φ)
Y l m (θ, φ) = f l m (θ) e i m φ
Y l m (θ, φ) = f l m (θ) e i m φ
No comments:
Post a Comment