Wednesday, July 25, 2012

Phyiscs-Intro Heat, Waves, Fluids


Useful math functions/approximations:
cos( A ) + cos( B ) = 2 cos [ ( A + B ) / 2 ] cos [ ( A - B ) / 2 ]
sin( A ) + sin( B ) = 2 sin [ ( A + B ) / 2 ] cos [ ( A - B ) / 2 ]
1/L - 1 / ( L + ΔL ) ≈ ΔL / L 
for x << 1
(1 + x) 1/2 ≈ 1 + x/2
ln (1 + x) ≈ x
due to taylor expansion
Constants:
ρ = 1 x 10 kg/m 
g = 9.8 m/s 
= 1 x 10 5
Speed of sound:
air = 340 m/s
water = 1440 m/s
1 atmosphere = 1 x 10 = 76 cm Hg
R = N = 8.3 J/(mol K)
= 1.4 x 10 -23 
= 6.0 x 10 23 
1 atomic mass unit = 1.7 x 10 -27 kg
1 cal = 4.2 J
Water
C = 4.2 kJ/kg-K
= 330 kJ/kg
= 2.2 x 10 kJ/kg
Pressure:
ρAv = const
P + ρ v / 2 + ρgy = const
Simple Harmonic Oscillator:
z / d t + cz = 0
z = z cos(ωt + φ), and ω = c 1/2
For a spring:
E = m v / 2 + k x / 2
For damped spring:
y / dt + b dy / m dt + k y / m = 0
y = y -α t cos ( ω ' t )
α = b / 2 m
ω ' ≈ ω = ( k / m ) 1/2
Forced oscillator
F = F i ω t
y = [(F / m) e i ω t ] / [ - ω + ω + 2 i α ω ]
Waves on a string
v = (T / μ)
ε ' = (1/2) μ ω 
P = (1 / 2) μ ω p
For sound waves
= (B / ρ) 1/2 
Δ p = - B (dD / dx)
I = (1 / 2) ρ ω s
Decibels
Β = 10 log 10 (I / I0)
= 1 x 10 -12 W/m 2
Wave refraction, Snell's law
sin(θ ) / v = sin( θ ) / v 
sin( θ ) / sin( θ ) = v / v = n / n 2
Beats in waves f - f 2
cos(ω t) + D cos(ω t) = 2 D cos[(ω t + ω t) / 2] cos[(ω t - ω t) / 2]
f = f (v +/- v ) / (v +/- v s0 )
B = - V (dp / dV) T
Thermodynamics
α = (1 / L) (dL / dT) 
Β = (1 / V) (dV / dT) 
P V = n R T
(m v avg ) / 2 = (3 k T) / 2
mfp = 1 / [2 1/2 4 π r (N / V)]
dQ = dE + dW
= (3 / 2) R , (5 / 2) R , 3 R
atoms, diatomic, polyatomic
= c + R for ideal gas
P V γ = const. γ = c / c v
W = [p / (γ -1)] [1 - (V / V γ - 1 ]
dQ / dt = e σ A T 
σ = 5.7 x 10 -8 W/m 
dQ / dt = -k A dT / dx
ΔS ≥ 0
dQ = T dS
ΔS = ∫ dQ / T
S = k ln (W)
b - > a = exp(-ΔS ab / k )
e = W / Q ≤ 1 - T / T 
COP = Q / W ≤ T / (T - T )

No comments:

Post a Comment