Useful math functions/approximations:
cos( A ) + cos( B ) = 2 cos [ ( A + B ) / 2 ] cos [ ( A - B ) / 2 ]
sin( A ) + sin( B ) = 2 sin [ ( A + B ) / 2 ] cos [ ( A - B ) / 2 ]
1/L - 1 / ( L + ΔL ) ≈ ΔL / L 2
for x << 1
(1 + x) 1/2 ≈ 1 + x/2
ln (1 + x) ≈ x
due to taylor expansion
sin( A ) + sin( B ) = 2 sin [ ( A + B ) / 2 ] cos [ ( A - B ) / 2 ]
1/L - 1 / ( L + ΔL ) ≈ ΔL / L 2
for x << 1
(1 + x) 1/2 ≈ 1 + x/2
ln (1 + x) ≈ x
due to taylor expansion
Constants:
ρ = 1 x 10 3 kg/m 3
g = 9.8 m/s 2
p 0 = 1 x 10 5
g = 9.8 m/s 2
p 0 = 1 x 10 5
Speed of sound:
v air = 340 m/s
v water = 1440 m/s
1 atmosphere = 1 x 10 5 = 76 cm Hg
R = N A = 8.3 J/(mol K)
k B = 1.4 x 10 -23
N A = 6.0 x 10 23
1 atomic mass unit = 1.7 x 10 -27 kg
1 cal = 4.2 J
v water = 1440 m/s
1 atmosphere = 1 x 10 5 = 76 cm Hg
R = N A = 8.3 J/(mol K)
k B = 1.4 x 10 -23
N A = 6.0 x 10 23
1 atomic mass unit = 1.7 x 10 -27 kg
1 cal = 4.2 J
Water
C = 4.2 kJ/kg-K
L F = 330 kJ/kg
L V = 2.2 x 10 3 kJ/kg
L F = 330 kJ/kg
L V = 2.2 x 10 3 kJ/kg
Pressure:
ρAv = const
P + ρ v 2 / 2 + ρgy = const
P + ρ v 2 / 2 + ρgy = const
Simple Harmonic Oscillator:
d 2 z / d t 2 + cz = 0
z = z 0 cos(ωt + φ), and ω = c 1/2
z = z 0 cos(ωt + φ), and ω = c 1/2
For a spring:
E = m v 2 / 2 + k x 2 / 2
For damped spring:
d 2 y / dt 2 + b dy / m dt + k y / m = 0
y = y 0 e -α t cos ( ω ' t )
α = b / 2 m
ω ' ≈ ω 0 = ( k / m ) 1/2
y = y 0 e -α t cos ( ω ' t )
α = b / 2 m
ω ' ≈ ω 0 = ( k / m ) 1/2
Forced oscillator
F = F 0 e i ω t
y = [(F 0 / m) e i ω t ] / [ - ω 2 + ω 2 0 + 2 i α ω ]
y = [(F 0 / m) e i ω t ] / [ - ω 2 + ω 2 0 + 2 i α ω ]
Waves on a string
v = (T / μ)
ε ' = (1/2) μ ω 2 D m 2
P = (1 / 2) μ ω 2 D m 2 v p
ε ' = (1/2) μ ω 2 D m 2
P = (1 / 2) μ ω 2 D m 2 v p
For sound waves
v s = (B / ρ) 1/2
Δ p = - B (dD / dx)
I = (1 / 2) ρ ω 2 D m 2 v s
Δ p = - B (dD / dx)
I = (1 / 2) ρ ω 2 D m 2 v s
Decibels
Β = 10 log 10 (I / I0)
I 0 = 1 x 10 -12 W/m 2
I 0 = 1 x 10 -12 W/m 2
Wave refraction, Snell's law
sin(θ 1 ) / v 1 = sin( θ 2 ) / v 2
sin( θ 1 ) / sin( θ 2 ) = v 1 / v 2 = n 1 / n 2
sin( θ 1 ) / sin( θ 2 ) = v 1 / v 2 = n 1 / n 2
Beats in waves f 1 - f 2
D m cos(ω 1 t) + D m cos(ω 2 t) = 2 D m cos[(ω 1 t + ω 2 t) / 2] cos[(ω 1 t - ω 2 t) / 2]
f = f 0 (v s +/- v d ) / (v s +/- v s0 )
B = - V (dp / dV) T
f = f 0 (v s +/- v d ) / (v s +/- v s0 )
B = - V (dp / dV) T
Thermodynamics
α = (1 / L) (dL / dT) p
Β = (1 / V) (dV / dT) p
P V = n R T
(m v 2 avg ) / 2 = (3 k B T) / 2
l mfp = 1 / [2 1/2 4 π r 2 (N / V)]
dQ = dE + dW
Β = (1 / V) (dV / dT) p
P V = n R T
(m v 2 avg ) / 2 = (3 k B T) / 2
l mfp = 1 / [2 1/2 4 π r 2 (N / V)]
dQ = dE + dW
c v = (3 / 2) R , (5 / 2) R , 3 R
atoms, diatomic, polyatomic
atoms, diatomic, polyatomic
c p = c v + R for ideal gas
P V γ = const. γ = c p / c v
P V γ = const. γ = c p / c v
W = [p 1 V 1 / (γ -1)] [1 - (V 1 / V 2 ) γ - 1 ]
dQ / dt = e σ A T 4
σ = 5.7 x 10 -8 W/m 2 K 4
dQ / dt = -k A dT / dx
ΔS ≥ 0
dQ = T dS
ΔS = ∫ dQ / T
S = k B ln (W)
P b - > a = exp(-ΔS ab / k B )
e = W / Q H ≤ 1 - T L / T H
COP = Q L / W ≤ T L / (T L - T H )
dQ / dt = e σ A T 4
σ = 5.7 x 10 -8 W/m 2 K 4
dQ / dt = -k A dT / dx
ΔS ≥ 0
dQ = T dS
ΔS = ∫ dQ / T
S = k B ln (W)
P b - > a = exp(-ΔS ab / k B )
e = W / Q H ≤ 1 - T L / T H
COP = Q L / W ≤ T L / (T L - T H )
No comments:
Post a Comment