Example:
|1 2 3|
|4 5 6|
|7 8 9|
The normal formula for the determinant of a 3 by 3 matrix would be
det=1(5x9-6x8)-2(4x9-6x7)+3(4x8-5x7)
det=45-48-2(36-42)+3(32-35)
det=0
However we can solve this in a more arbitrary fashion utilizing a different row than the top row
det=-4(2x9-3x8)+5(1x9-3x7)-6(1x8-2x7)
det=-4(18-24)+5(9-21)-6(8-14)
det=0
Or by the last row
det=7(2x6-3x5)-8(1x6-3x4)+9(1x5-2x4)
det=7(12-15)-8(6-12)+9(5-8)
det=0
This can be used to make it easier to solve determinants by finding the simplest pattern to solve for the determinant.
|0 0 2 3 1|
|0 0 0 2 2|
|0 9 7 9 3|
|0 0 0 0 5|
|3 4 5 8 5|
-5
|0 0 2 3|
|0 0 0 2|
|0 9 7 9|
|3 4 5 8|
-5(2)
|0 0 2|
|0 9 7|
|3 4 5|
-5(2)(2)
|0 9|
|3 4|
-5(2)(2)(0x4-3x9)
det=540
No comments:
Post a Comment