Tuesday, October 29, 2013

Electrical Engineering - Finfet

The following will be notes taken on the subject of FinFets
  • Summary
    • Classical Mosfet
      • Transistor that operates by using an Electrical field to invert the channel allowing conduction from source to drain


        • The Classical Mosfet Dimensions
          • Include length the short distance in this picture, Width is the longer dimension
        • Functionality
          • Length reduction results in loss of control over the channel
            • performance reduction
      • Finfet
        • Goal
          • solve performance reduction caused by smaller sizes 
        • Wrap the gate electrode around the channel
        • Thin fin of sillicon acts as the channel and it is encased by the gate electrode
        • Silicon fin surrounded by extension implant and poly oxide
        • Premise
          • di-electric and metal gate allows for a stronger e-field to be formed as it increases the dimensions of the gate effective using the height/thickness of the fin as the channel length allowing for a decrease in overall size when compared to a typical Mosfet
        • Source and Drain can be wrapped in silicon germanium or silicon carbon stressors just like classical transistors
        • Shown below is a representation of a finfet design used for production
        • The gate electrode is uniform for ease of construction
    • Clarification of terminology
      • After seeing the design used for production, we can see that it is nearly identical to the construction of the tri-gate

      • The only difference is that a tri-gate includes multiple sources and drains whereas the finfet description shows only a single source and drain but the process of construction seems identical, and terminology could be used interchangeably assuming you're fine with annoying Intel
      • The original papers indicate that the original process of the finfet did not wrap around on top of the fin, lowering the overall z or height of the overall transistor but this is too complicated of a process for mass production so the standard finfet is equivalent to the tri-gate which does wrap around 
    • Benefits
      • Maintain performance which includes
        • Conductivity when turned on
        • Insulation when turned off
          • Finfet in relation to a standard mosfet reduces electron tunneling effect when insulation is small
            • Main issues are - weaker dielectric, small size
            • Finfet significantly increases volume of dielectric reducing leakage currents
        • increase switching speed
          • due to lower size due to gate capacitance being smaller
          • note - non-issue in modern constructions, interface delay between metals is more significant as we get to smaller scale
        • Lower's Voltage requirements
          • increases lifetime/efficiency of product per charge
      • Company Promises
        • estimation, 2-5% higher price in exchange for 37% speed increase and 90% reduction in leakage current
    • Complications
      •  Adds complexity to construction process
        • possible reduction in yield
          • can increase price significantly above 2-5% estimate for the company overall
      • Depending on process
        • high k-dielectrics are more expensive, but already required as transistor size decreases
      • Increased modeling difficulty
        • geomotries now are first order effects
          • random fluctuations in manufacturing can now cause deviations in result
          • impacts possible econcomic forecasts for the division
        • Verification
          • requires new software to ensure design rules for fin to fin spacing is followed
    • History
      • construction process has roots in 1990s

    No comments:

    Post a Comment